Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: covidwho-2200326

ABSTRACT

HSV-1 is a typical neurotropic virus that infects the brain and causes keratitis, cold sores, and occasionally, acute herpes simplex encephalitis (HSE). The large amount of proinflammatory cytokines induced by HSV-1 infection is an important cause of neurotoxicity in the central nervous system (CNS). Microglia, as resident macrophages in CNS, are the first line of defense against neurotropic virus infection. Inhibiting the excessive production of inflammatory cytokines in overactivated microglia is a crucial strategy for the treatment of HSE. In the present study, we investigated the effect of nicotinamide n-oxide (NAMO), a metabolite mainly produced by gut microbe, on HSV-1-induced microglial inflammation and HSE. We found that NAMO significantly inhibits the production of cytokines induced by HSV-1 infection of microglia, such as IL-1ß, IL-6, and TNF-α. In addition, NAMO promotes the transition of microglia from the pro-inflammatory M1 type to the anti-inflammatory M2 type. More detailed studies revealed that NAMO enhances the expression of Sirtuin-1 and its deacetylase enzymatic activity, which in turn deacetylates the p65 subunit to inhibit NF-κB signaling, resulting in reduced inflammatory response and ameliorated HSE pathology. Therefore, Sirtuin-1/NF-κB axis may be promising therapeutic targets against HSV-1 infection-related diseases including HSE.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Humans , NF-kappa B/metabolism , Microglia/metabolism , Herpesvirus 1, Human/metabolism , Sirtuin 1/metabolism , Inflammation/metabolism , Cytokines/metabolism , Herpes Simplex/pathology
2.
Reumatismo ; 74(2)2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-2030154

ABSTRACT

Since COVID-19 vaccination started in December 2020, different side effects were reported. This case report describes the possibility of developing disseminated herpes simplex infection after COVID-19 vaccine in a patient with rheumatoid arthritis. In this case report, we describe a 63-year-old Iranian female. She was a known case of seronegative rheumatoid arthritis and presented with generalized papulo-pustular itchy and painful skin lesions which appeared about seven days after the second dose of Sinopharm BIBP COVID-19 vaccine (BIBP-CorV). A biopsy of the skin lesions revealed acantholysis, neutrophils, and enlarged keratinocytes with eosinophilic intra-nuclear inclusions. Findings were consistent with herpes simplex infection. She was successfully treated by acyclovir. Disseminated cutaneous herpes simplex infection may have been triggered by COVID-19 vaccination. Reactivation of herpes virus after COVID-19 vaccines was reported in both rheumatic patients and other individuals. Whether having an underlying autoimmune inflammatory disorder could be an additional risk factor is still unknown.


Subject(s)
Arthritis, Rheumatoid , COVID-19 Vaccines , COVID-19 , Herpes Simplex , Skin Diseases , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Female , Herpes Simplex/drug therapy , Herpes Simplex/etiology , Herpes Simplex/pathology , Humans , Iran , Middle Aged , Vaccination/adverse effects
3.
Viruses ; 13(8)2021 08 18.
Article in English | MEDLINE | ID: covidwho-1376994

ABSTRACT

Viral infection is a global public health threat causing millions of deaths. A suitable small animal model is essential for viral pathogenesis and host response studies that could be used in antiviral and vaccine development. The tree shrew (Tupaia belangeri or Tupaia belangeri chinenesis), a squirrel-like non-primate small mammal in the Tupaiidae family, has been reported to be susceptible to important human viral pathogens, including hepatitis viruses (e.g., HBV, HCV), respiratory viruses (influenza viruses, SARS-CoV-2, human adenovirus B), arboviruses (Zika virus and dengue virus), and other viruses (e.g., herpes simplex virus, etc.). The pathogenesis of these viruses is not fully understood due to the lack of an economically feasible suitable small animal model mimicking natural infection of human diseases. The tree shrew model significantly contributes towards a better understanding of the infection and pathogenesis of these important human pathogens, highlighting its potential to be used as a viable viral infection model of human viruses. Therefore, in this review, we summarize updates regarding human viral infection in the tree shrew model, which highlights the potential of the tree shrew to be utilized for human viral infection and pathogenesis studies.


Subject(s)
Disease Models, Animal , Tupaia , Virus Diseases , Adenoviridae Infections/immunology , Adenoviridae Infections/virology , Animals , COVID-19/virology , Dengue/immunology , Dengue/pathology , Dengue/virology , HIV Infections/virology , Hepatitis B/immunology , Hepatitis B/virology , Hepatitis C/immunology , Hepatitis C/pathology , Hepatitis C/virology , Herpes Simplex/pathology , Herpes Simplex/virology , Humans , Influenza, Human/immunology , Influenza, Human/virology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Zika Virus Infection/immunology , Zika Virus Infection/pathology , Zika Virus Infection/virology
5.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: covidwho-983187

ABSTRACT

Viral infections and associated diseases are responsible for a substantial number of mortality and public health problems around the world. Each year, infectious diseases kill 3.5 million people worldwide. The current pandemic caused by COVID-19 has become the greatest health hazard to people in their lifetime. There are many antiviral drugs and vaccines available against viruses, but they have many disadvantages, too. There are numerous side effects for conventional drugs, and active mutation also creates drug resistance against various viruses. This has led scientists to search herbs as a source for the discovery of more efficient new antivirals. According to the World Health Organization (WHO), 65% of the world population is in the practice of using plants and herbs as part of treatment modality. Additionally, plants have an advantage in drug discovery based on their long-term use by humans, and a reduced toxicity and abundance of bioactive compounds can be expected as a result. In this review, we have highlighted the important viruses, their drug targets, and their replication cycle. We provide in-depth and insightful information about the most favorable plant extracts and their derived phytochemicals against viral targets. Our major conclusion is that plant extracts and their isolated pure compounds are essential sources for the current viral infections and useful for future challenges.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , HIV Infections/drug therapy , Hepatitis C, Chronic/drug therapy , Herpes Simplex/drug therapy , Influenza, Human/drug therapy , Phytochemicals/therapeutic use , Pneumonia, Viral/drug therapy , Antiviral Agents/chemistry , Antiviral Agents/classification , Antiviral Agents/isolation & purification , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Drug Discovery , HIV/drug effects , HIV/pathogenicity , HIV/physiology , HIV Infections/pathology , HIV Infections/virology , Hepacivirus/drug effects , Hepacivirus/pathogenicity , Hepacivirus/physiology , Hepatitis C, Chronic/pathology , Hepatitis C, Chronic/virology , Herpes Simplex/pathology , Herpes Simplex/virology , Humans , Influenza, Human/pathology , Influenza, Human/virology , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Pandemics , Phytochemicals/chemistry , Phytochemicals/classification , Phytochemicals/isolation & purification , Plants, Medicinal , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Simplexvirus/drug effects , Simplexvirus/pathogenicity , Simplexvirus/physiology , Virus Internalization/drug effects , Virus Replication/drug effects
6.
Biofactors ; 47(1): 6-18, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-950385

ABSTRACT

Specialized proresolving mediators (SPMs) are endogenous lipid metabolites of long-chain polyunsaturated fatty acids that are involved in promoting the resolution of inflammation. Many disease conditions characterized by excessive inflammation have impaired or altered SPM biosynthesis, which may lead to chronic, unresolved inflammation. Exogenous administration of SPMs in infectious conditions has been shown to be effective at improving infection clearance and survival in preclinical models. SPMs have also shown tremendous promise in the context of inflammatory lung conditions, such as acute respiratory distress syndrome and chronic obstructive pulmonary disease, mostly in preclinical settings. To date, SPMs have not been studied in the context of the novel Coronavirus, severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), however their preclinical efficacy in combatting infections and improving acute respiratory distress suggest they may be a valuable resource in the fight against Coronavirus disease-19 (COVID-19). Overall, while the research on SPMs is still evolving, they may offer a novel therapeutic option for inflammatory conditions.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , Docosahexaenoic Acids/therapeutic use , Lipoxins/therapeutic use , Lung Injury/drug therapy , Pulmonary Disease, Chronic Obstructive/drug therapy , Respiratory Distress Syndrome/drug therapy , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Herpes Simplex/drug therapy , Herpes Simplex/metabolism , Herpes Simplex/pathology , Humans , Influenza, Human/drug therapy , Influenza, Human/metabolism , Influenza, Human/pathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung Injury/metabolism , Lung Injury/pathology , Lung Injury/virology , Periodontitis/drug therapy , Periodontitis/metabolism , Periodontitis/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/virology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2/pathogenicity , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/pathology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL